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TEXAS ELECTRICAL AND COMPUTER ENGINEERING

Course Logistics

" We meet on MW 10:30am - noon (BUR 130) /
® Do | have to come to the classroom, or can | audit? 9
" After-class communication: Slack (link sent) — IMPORTANT!

" Class materials are distributed on Course Webpage (NOT Canvas): https://vita-group.github.io/spring 23.htm|

" We do not follow any textbook closely. Instead, we have many “recommended materials”.
" Instructor Office Hour: 11am — noon every Tuesday, at EER office 6.886
" TA Office Hour: 4 -5 pm every Thursday, at EER 3.854

" Online Q&A: anytime, just ask on Slack!


https://vita-group.github.io/fall_21.html

TEXAS ELECTRICAL AND COMPUTER ENGINEERING

Overview & Prerequisite

= Computer vision is a HUGE field. This class is designed to cover just “several drops” in the ocean,

focusing on the “hot and fresh” frontiers (I have to re-make 40-50% slides since its last offering)

" Lectures are mixture of detailed techniques and high-level ideas.

"This class is NOT designed for pure “beginners”

" We will speak technical language quickly from Day 1

" You are assumed to already be familiar with: Linear Algebra, Convex Optimization, Probability &

Stochastic Process, Image & Video Processing

" You are assumed to know many basics about (but not an expert on): Digital Signal Processing,

Image & Video Processing, Machine Learning & Data Mining



TEXAS ELECTRICAL AND COMPUTER ENGINEERING

My Assumption (a.k.a. Your Expectation)

* You have some basic understanding of Deep Learning
. e.g., you should have already heard about LeNet or AlexNet; known what convolution or fully-
connected layers were; or tried things like MNIST classification before
« You are comfortable with Python & PyTorch, and enjoy "keeping hands dirty”
. Since this is a graduate-facing class, NO additional coding or basic data science “crush course”

will be offered

« You are prepared to pay attention to our intensive, fast-forwarding contents, every
75-minute class

. This field is developed at an unprecedentedly high pace, so will this class be



TEXAS ELECTRICAL AND COMPUTER ENGINEERING

Grading Policy

« Class Participation: 10% (what does this mean?)

« Mid-term exam: 20% (Time TBD).

« Final Project: 70%

Progress report (15%) Due by the end of Week 8 (3/05 Sunday): 2-Page report, including project title,

team member, problem description, preliminary literature survey, the proposed technical plan, and references

Presentation (20%): Be prepared to be challenged by your peers and the instructor
Code review (15%): Write clean, well-documented and runnable codes, PLEASE

Final Report (20%): (8+1)-page report following the standard CVPR paper template (and quality level)

. Template: http://cvpr2020.thecvf.com/sites/default/files/2019-09/cvpr2020AuthorKit.zip



http://cvpr2020.thecvf.com/sites/default/files/2019-09/cvpr2020AuthorKit.zip

TEXAS ELECTRICAL AND COMPUTER ENGINEERING

Project Guidance

Teaming: we encourage 2-3 students to form a team, as you are expected to carry on a semester-long research

project with substantial innovations.
e  Teams with more or fewer members may be well justified to be approved by the instructor

. You are encouraged to use the slack channel “project team” to recruit teammates

Each project team must be registered to and approved by the end of Week 7 (2/26 Sunday).

. A Google Sheet will be provided for team registration

Topic: your choice, but must be relevant to computer vision

. What if | don’t have a specific idea now ? Talk to the instructor & the TA ...

Some good suggestions developed by TAs before: https://vita-group.github.io/Fall22/0901 project.pdf

. How to develop a good project timeline? How to write good project proposal and report? Any example or “template”?


https://vita-group.github.io/Fall22/0901_project.pdf

Feature learning: Going Deep

Classical

Feature Learning Classifier

Train with BIG input &
output, from end to end

Low-level Mid-level High-level

lassifier
Features Features Features Classifie

More abstract feature representation >



Deep learning

e Learn a feature hierarchy all the way from raw inputs (e.g. pixels) to classifier
* Each layer extracts features from the output of previous layer

* Train all layers jointly

) hidden layer 1  hidden layer 2 hidden layer 3
input layer

output layer




Status Quo

AlexNet, 8 layers % VGG, 19 layers ResNet, 152 layers
(ILSVRC 2012) (ILSVRC 2014) (ILSVRC 2015)
Current Trend:

B To build increasingly larger, deeper networks,
trained with more massive data, based on the
benefits of high-performance computing.

B Play with the connectivity and add “skips”




'

nEEPEn ““nil - 4 - - "
> = i T e A
GAME M““E . . —— s bo 2ol e 2012

- .




Grand Challenges

= Why/how deep learning works?

e In theory, many cases shouldn’t even work...

e Gap between engineering (or art) and science:

Lack of theoretical understandings &
guarantees, and analytical tools

e Training is computationally expensive and
difficult, relying on many “magics”

e No principled way to incorporate domain
expertise, or to interpret the model behaviors

Black Box

Neural Network

Input 1 —p

AND OR NOT
min(AB) maeA 3) [1-A)

Extract Logic in either symbolic or fuzzy form

A 4
Output 1
Input ... —p
[ | Output n
Inputn —p

/# Rule extraction ™,
i algorithms

TreePlan Decezion Tree

Extract Decision Trees contraining Logic

11



From fully connected to convolutional networks

feature map

/

single set of
weights
_\
\
\\ .
— \\\\

image Convolutional layer



Convolution as feature extraction

Feature Map



-

Key operations in a CNN

[ Feature maps }

-

{ Spatial pooling }

[ Non-linearity 1

Feature Map

Source: R. Fergus, Y. LeCun



LeNet-5

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16@5x5

INPUT 6@28x28
32x32 S2: f. maps

it = B

I | Fullconrlection | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

CS:layer rg: jayer OUTPUT
120 84 Y 10

* Average pooling

* Sigmoid or tanh nonlinearity

* Fully connected layers at the end

 Trained on MNIST digit dataset with 60K training examples

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition,
Proc. IEEE 86(11): 2278-2324, 1998.



http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

AlexNet, 2012

5 Convolutional Layers 1000 ways
Softmax

AL
- g '
- 5 2538 J0ag \dense
13 \ 13
tE T hs dense | |dense
1000
192 128 Max -
Max 128 Max pooling 204t 3048 o«
pooling pooling t

3 Fully-Connected
Layers
* The FIRST winner deep model in computer vision, and one of the most classical choices for
domain experts to adapt for their applications
* 5 convolutional layers + 3 fully-connected layers + softmax classifier
* Three Key Design Features: ReLU, dropout, data augmentation




Recap: “Chain Rule”

Forwardpass Backwardpass
x dL B dLdz
& dzdx
f(x; y) > Z df <
dl. dLdz
Y o Ty

dL
dz



From Sigmoid to RelLU

sigmoid function
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Dropout

 Randomly select weights to update

* |n each update step, randomly
sample a different binary mask to all
the input and hidden units

* Multiple the mask bits with the units
and do the update as usual

* Typical dropout probability: 0.2 for
input and 0.5 for hidden units

* Very useful for FC layers, less for conv
layers, not useful in RNNs

o
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Data Augmentation

Horizontal Flip

L 74
- EEEE

* Adding noise to the input: a special kind of augmentation

* Be careful about the transformation applied -> label preserving
e Example: classifying ‘b’ and ‘d’; ‘6" and ‘9’



VGG-Net, 2014

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
mput (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 || conv3-128 | conv3-128
conv3-128 | conv3-128 || conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 || conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 || conv3-256 | conv3-256
convl-256 || conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 || conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 || conv3-512 | conv3-512
convl-512 || conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 || conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 || conv3-512 | conv3-512
convl-512 || conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Key Technical Features:
* Increase depth (up to 19)
* Smaller filter size (3)

Configurations D and E are
widely used for various tasks,
called VGG-16 and VGG-19



Deep Residual Network (ResNet), 2015
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skip connections for residual mapping, up to > 1000 layers

Key Technical Features



Wide ResNet, 2016

X X] X]

X
| convlxl | \ | conv3x3 [
conv3x3 | conv3x3 | |
| , | dropout |
conv3x3 | conv3x3 | |

| conv1xl | | conv3x3 |

[+1 [+1 I+1 [+1
(a) basic (b) bottleneck (c) basic-wide (d) wide-dropout
* Widening of ResNet blocks (if done properly) provides a more effective way of improving
performance of residual networks compared to increasing their depth.

* A wide 16-layer deep network has the same accuracy as a 1000-layer thin deep network
and a comparable number of parameters, although being several times faster to train.



Densely Connected Convolutional Networks

(DenseNet), 2017
Prediction
Dense Block 2 ol |, Dense Block 3 -
) @ v® v® yo [»>51>(S . ~® vo vo yo | »|Sin(3 “horse”

Input

Dense Block 1
U "0 v vO v@

Buijood

SN

Key Technical Features:

* Finer combination of
multi-scale features
(or whatever...)




ResNext, 2017/

256-d in 256-d in

* Core idea: multi-path 256, 1x1, 64 256,1x1,4 | | 256,1x1,4 |, . 5,| 256,1x1,4
2 v v paths L 2
Stru Ctu re 64, 3)(3, 64 4‘ 3)(3, 4 4' 3)(3, 4 ceee 4' 3)(3, 4
e “Split-transform-merge” £2 £2 £2 ¥
strategy 64, 1x1, 256 4,1x1,256 | | 4,1x1,256 4,1x1,256

* New notion of
“cardinality”

e ResNet could be viewed 256-d out

as cardinality -1 Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

256-d out



Gradient Descent (GD)

Algorithm 1 Batch Gradient Descent at lteration £

Require: Learning rate €
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Compute gradient estimate over N examples:
3 g +xVed, L(f(x1;0),y®)
4: Apply Update: 6 < 0 — eg
5. end while

@ Positive: Gradient estimates are stable

@ Negative: Need to compute gradients over the entire training
for one update



Stochastic Gradient Descent (SGD)

Algorithm 2 Stochastic Gradient Descent at Iteration k

Require: Learning rate €
Require: Initial Parameter 6
1: while stopping criteria not met do
2: Sample example (x(9), y(1)) from training set
3 Compute gradient estimate:
4 g+ +VeL(f(x®;0),y")
5: Apply Update: 6 < 0 — eg
6: end while

@ ¢ is learning rate at step k
e Sufficient condition to guarantee convergence:

0.0

Zek:ooand iei<oo



GD versus SGD

@ Batch Gradient Descent:
1 . .
5 el E (7). (1)
g%—l_Nv@ i L(f(Xzae)ayZ)
0« 60—ecg

e SGD:

&+ +VoL(f(x?;0),y?)
0+ 0—cg



Minibatch

e Potential Problem: Gradient estimates can be very noisy
* Obvious Solution: Use larger mini-batches (In theory, growingly larger)

* Advantage: Computation time per update does not depend on number of
training examples.

* This allows convergence on extremely large datasets

* The larger MB size the better (only if you can)!!

“Large Scale Learning with Stochastic Gradient Descent”, Leon Bottou.



Momentum

* The Momentum method is a method
to accelerate learning using SGD

1:000:

* In particular SGD suffers in the
following scenarios:
* Error surface has high curvature ol
* Small but consistent gradients
* Noisy gradients

500 |

@ Gradient Descent would move quickly down the walls, but
very slowly through the valley floor



Momentum
o Update rule in SGD: {

O @ _ng

C(0)

where gl) = VoC(OW)
o Gets stuck in local minima
or saddle points

» O

— Py e

o Momentum: make the same movement y"
in the last iteration, corrected by negative
gradient:

pUFD v —(1—2)g!

®(H—1) (_ ®(t) 4+ nv(H—l) Negative Gredient

o v\ is a moving average of —g()



Adaptive Learning Rate Optimization

e Popular Solver Examples: AdGrad, RMSProp, Adam

SGD: 0 + 0 — eg
Momentum: v < av —eg then § < 0 + v

Nesterov: v <— av — eVy (L(f(x(i); 0+ av), ym)) then 0 <~ 0 4 v

AdaGrad: r<r+g® g then Af— «+ ® g then 8 < 6 + A6

€
6+ /1
RMSProp: 1 ¢ pr4 (1 — p)g ©® & then A < —— _ @ g then 6 « 0 + Af
6+ /1T

then 0 «— 6 + A0

Adam: S «




Batch Normalization

* In ML, we assume future data will
be drawn from same probability
distribution as training data

* For a hidden layer, after training,
the earlier layers have new
weights and hence may generate
a new distribution for the next
hidden layer

 \WWe want to reduce this internal
covariate shift for the benefit of
later layers

Input: Values of z over a mini-batch: B = {z1._ . };
Parameters to be learned: v,
Output: {y; = BN, s(z;)}

1 m
KB < E;%

1 m
o ooy Z(ﬂfi — )’
1=1

Ly — UB
\/0'123 + €

Y < YT, + B = BN%B(xi)

// mini-batch mean

// mini-batch variance

// normalize

/fi%

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.




loss

Monitor Your
Training Curve

low learning rate

high learning rate

good learning rate

Figure 1
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Clasification accuracy
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Tramneng accuracy

—  Vahdaton accuracy

Figure 3

LY

big gap = overfitting

=2 increase regularization strength

no gap
=> increase model capacity

If this looks too linear: learning rate is|low.
If it doesn’t decrease much: learning ﬁate might be too high

the “width” of the curve is related

to the batch size. This|one looks too wide (noisy)

=> might want to increase batch size

2

rs)

&0
Epoch

Figure 2



(More) Art of Convolutions



Fully Convolutional Network (FCN), 2014

. AN %
,\0' c:\

forward /inference

backward/learning

| 9 A
b«ng &096 21

/3%& 3%& 'f)b

Key Technical Features:
* No fully-connected layer -> No fixed requirement on input size

 Widely adopted in pixel-to-pixel prediction tasks, e.g., image segmentation



U-Net, 2015

Network Architecture

Contractingpath| Expansive path

input ' —
ima{)gue > oo 4 N output
tile il 1 | | segmentation
2l S & ¥ map

i

:‘—@.@.ﬂ =»conv 3x3, RelLU
i 1 - -

copy and crop

% _M.@] § max pool 2x2
$ -

4 up-conv 2x2
=p CONV 1x1

 The architecture consists of a
contracting path to capture
context

e ...and a symmetric expanding
path to enable precise
localization.

* Also fully convolutional

* VVery popular backbone for
dense prediction (image
segmentation, restoration...)



Attention Mechanism

A___ ]

[bird |
flying
over

14x14 Feature Map

D

a

body
of
water

1.Input 2. Convolutional 3. RNN with attention 4. Word by
Image  Feature Extraction over the image word

generation)

“Show, Attend and Tell: Neural Image Caption Generation
with Visual Attention”, 2015

|dea is simple: add a (learned)
weighted mask to feature (feature
selection)

Use a feed-forward deep network
to extract L feature vectors

Can use a recurrent network to
iteratively update the attention
(shown as bright regions) for each
output word

Find meaningful correspondences
between words and attentions



Examples of (Input) Visual Attention

A WomaTi s throwmg a frisbee in a park. A dog is standmg on a hardwood floor. A stop sign is on a road with a
mountain in the background.

A ||tt|e girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear, in the water. trees in the background.



Spatial and Channel Attention

Spatial Attention Module

conv
layer
~@-

Channel-refined [MaxPool, AvgPool] Spatlal Attention
feature F’

( " Channel Attention Module )
axPool

5N S=

\ AvgPool / \

Channel Attention
Shared MLP |5 Mc

\Input feature F j




Depth-Wise Convolution

* Depthwise convolution is
the channel-wise spatial
convolution.

* |t is often used together

IR

with pointwise convolution,
i.e., 1x1 convolution to
change the channel
dimension (number of
feature maps)

Depthwise Convolution

AN

b

[

Dyx Dy conv

%

%

AN

Pointwise Convolution

1x1 conv
T

—




Table 1. MobileNet Body Architecture

I\/l O b I ‘ e N Et (V 1 ) Type / Stride Filter Shape Input Size
Conv /s2 3 x3x3x32 224 x 224 x 3
Conv dw / sl 3 x 3 x32dw 112 x 112 x 32
. . . . . Conv / sl 1x1x32x64 112 x 112 x 32
* Single streamlined, very light-weight architecture . a7 T %3 < 61 dw 19 % 112 < 64
.« . . . Conv /sl 1 x1x64x128 56 x 56 x 64
* Main idea: Depthwise Separable Convolutions Conv dw 7 si T3 % 198 dw 56 56 x 128
. . . T . Conv / sl 1 x1x128 x 128 56 x 56 x 128
e Other ideas: Width Multiplier a for Thinner e e e ST e
Models + Resolution Multiplier p for Reduced Conv /51 Tx1x128 x 256 | 28 x 28 x 128
Representatlon Conv dw / sl 3 x 3 x 256 dw 28 x 28 x 256
Conv /sl 1 x 1 x 256 x 256 28 x 28 x 256
Conv dw / s2 3 x 3 x 256 dw 28 x 28 x 256
: Conv /sl 1 x1x256x 512 14 x 14 x 256
3x3 Conv 3x3 Depthwise Conv — Convdw/sl | 3x3x512dw 14 x 14 x 512
= = > Conv /sl 1x1x512x512 | 14 x 14 x 512
T T Conv dw / s2 3 x3x512dw 14 x 14 x 512
Rel U Rel U Conv / sl 1 x1x512x 1024 7x7x512
| Conv dw / s2 3 x 3 x 1024 dw 7Tx7x 1024
1x1 Conv Conv / sl 1x1x1024 x 1024 | 7 x 7 x 1024
L Avg Pool / s1 Pool 7 x 7 7x7x 1024
oN FC /sl 1024 x 1000 Tx 1 x 1024
Rel U Softmax / sl Classifier 1 x1x 1000

Standard Convolution (Left), Depthwise separable convolution (Right) With BN and ReLU




MobileNet (v2)

* Main idea: inverted residual structure

* Adding residual connections between the narrow bottleneck layers (considerably
more memory efficient - Why?)

* Non-linearities are removed in narrow layers to maintain representational power

* The intermediate expansion layer uses lightweight depthwise convolutions to
filter features as a source of non-linearity

Add conv 1x1, Linear

conv 1x1, Relu6 .
{ 1

(a) Residual block (b) Inverted residual block T o lx; teor| wise 343

Dwise 3x3, Relu6

stride=2, Relu6
W Dwise 3x3, T
| 1% stride=s, Relu6 1
u - 1u6, Dwise -’i COnV 1X1, Re|U6
>~ Conv 1x1, Relu6
+ {

it

Stride=1 block Stride=2 block

(b) MobileNet[7] (d) Mobilenet V2



3D Convolutional Network (3D CNN), 2011

Key Technical Features:
* Going from 2D convolutional filters to 3D filters, to take temporal coherence into consideration



More Efficient Design? '

N~/
% Parietal lobe
Frontal lobe \ /' ) )/

* “Two-streams hypothesis” for human vision 7{1(\ e ,Occhia

* The dorsal stream involves in the guidance of actions and Tempor;| }ob\S

recognizing where objects are in space. It contains a — /) .,,,,,///////
‘\ ‘“/

detailed map of the visual field. and detects & analyzes
location movements

* The ventral stream is associated with object recognition
and form representation. Also described as the “what”
stream, it has strong connections to the dorsal stream
and other brain regions controlling memory or emotion

* Long story short: human brains use two

relatively independent systems to recognize ' 0 i
objects and to record temporal movements. hat

=



Two Stream Network, 2014

input
video

" Spatial stream ConvNet

S
Z
_

conv1 || conv2 || conv3 || conv4 || conv5 fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

norm. norm. p00| 2%x2
single frame [P0l 2x2 || pool 2x2
=
- Temporal stream ConvNet

‘ conv1 || conv2 || conv3 || conv4 || convS fullé full7 ||softmax
7X7x96 || 5x5x256 || 3x3x512 || 3x3x512 || 3x3x512 || 4096 2048
stride 2 || stride 2 || stride 1 || stride 1 || stride 1 || dropout || dropout

. norm. || pool 2x2 pool 2x2
multi-frame pool 2x2

. optical flow

Figure 1: Two-stream architecture for video classification.



Slow-Fast Network, 2019

A state-of-the-art two-stream model with
* (i) a Slow pathway, operating at low frame rate, to capture spatial semantics

* (ii) a Fast pathway, operating at high frame rate, to capture motion at fine
temporal resolution.

==

Low frame rate HW

7
- ﬁ_ﬁ_

pC

Yy

uonorpaid

High frame rate BC



Why Transformer for Vision?

* Towards a general, conceptual
simple, and sufficiently versatile
architecture yet still achieving You doj¥{ have toreinvent
competitive performance for vision? the wheel.

* The inductive bias of CNNs, e.g.,

spatially invariant and locality-based,
also may not be sufficient ...

KEEP”™ .LAND INDEPENDENT
v




Basics: Transformer in NLP

= Standard model in NLP tasks
= Only consists of self-attention modules, instead of RNN
- Encoder-decoder

- Requires large dataset and high computational cost
= Pre-training and fine-tuning approaches : BERT & GPT

Output

Probabilities
|
| Softmax |
{
|  linear |
( . )
| Add & Norm Je~
Feed
Forward
( SUSIUL e
- i ~ [ Add & Norm J«~
> Add &_Norm ) Multi-Head
Feed Attention
Forward F s N x
A
Nix | Add & Norm e
~—>| Add & Norm ) VR
Multi-Head Multi-Head
Attention Attention
L J . .,
Positional Positional
Encodi ? & -
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.



Basics: Self-Attention

Embedding i g i £

| 56 the best
Input: LSC is the best!

g: query (giver)
" k: key (receiver)
ki=Wkal

3 v: value (info extractor)




Basics: Self-Attention
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Basics: Self-Attention

Attention A:
1 2 o
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Bringing Transformers into Computer Vision

- Only in local neighborhoods (1)

Image Transformer, ICML 2018
Stand-alone self-attention in vision models, NeurlPS 2019
On the relationship between self-attention and convolutional layers, ICLR 2020
- Exploring self-attention for image recognition, CVPR 2020
- Scalable approximations to global self-attention (2)

Generating long sequences with sparse transformers, arxXiv 2019

- Blocks of varying sizes (3)
Scaling autoregressive video models, ICLR 2019

- Only along individual axes (4)

Axial attention in multidimensional transformers, arXiv 2019
Axial-deeplab: Stand-alone axial-attention for panoptic segmentation, ECCV 2020



Bringing Transformers into Computer Vision

- Combining CNN with self-attention (5)

- Attention augmented convolutional networks, ICCV 2019, image classification
- End-to-end object detection with transformers, ECCV 2020, object detection
Videobert: A joint model for video and language representation learning, ICCY 2019, video processing
- Visual transformers, arxiv 2020, image classification
- Unified text-vision tasks (6)
- VQA
- Image Retrieval
- OCR (Document Layout Analysis)

- Most Related Works (7)

- Generative pretraining from pixels (iGPT), ICML 2020
- Big Transfer (BiT): General Visual Representation Learning, ECCV 2020



DETR: End-to-End Object Detection with
Transformers (ECCV’20)

* DETR directly predicts (in parallel) the final set of detections by combining a common CNN with a
transformer architecture. It does NOT rely on the many hand-designed components like in FasterRCNN.

-
o~ -

- »7
’ ’ -

;
\ transformer
CNN > > BN
Ll
[
[l

no object (o) no object (o)

encoder-
) decoder

set of image features set of box predictions bipartite matching loss

* The takeaway from DETR is bi-folds:

* DETR achieved comparable performance to Faster R-CNN, but not on par with more recent detectors (especially on small
objects), also requiring extra-long training schedule and auxiliary decoding losses

* DETR showed significant promise of generalizability, e.g., the same model easily applied to panoptic segmentation in a
unified manner



“Pure Transformer”: Visual Transformer (ViT, ICLR"21)

GIF from https://github.com/lucidrains/vit-pytorch



https://github.com/lucidrains/vit-pytorch

def forward(self, img, mask = None):
p = self.patch_size

x

Implementation

= rearrange(img, 'b ¢ (h p1l) (w p2) —> b (h w) (pl p2
x = self.patch_to_embedding(x)

cls_tokens = self.cls_token.expand(img.shape[0], -1, -1)
Vision Transformer (ViT) X = torch.cat((cls_tokens, x), dim=1)

x += self.pos_embedding

x = self.transformer(x, mask)

MLP
] Head 0 x = self.to_cls_token(x[:, 0])
— return self.mlp_head(x)
/ https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit pytorch.py#L99-1111

r

Transformer Encoder
Learnable Position Embedding

Epos = R(N+1)><D
Paltzcrlrlnl:eggiigon Sl . .. .. . . g * to retain positional information

* Extra learnable
R X, € RN<(P*C) - x E € RN*D

( LY FI1]]]
S : -— i & |
R . m Eml,gﬁ ity g w E * Because Transformer uses constant

widths, model dimension , through all of its layers

Image x € RH*WXC — A sequence of flattened 2D patches x, € RNX(P*C)



Implementation

def forward(self, img, mask = None):
p = self.patch_size

rearrange(img, 'b ¢ (h p1) (

self.patch_to_embedding(x)

x = torch.cat((cls_tokens, x), djm=1)

X += self.pos_embedding

x = self.transformer(x, mask)

x = self.to_cls_token(x[:, 0])
return self.mlp_head(x)

class Transformer(nn.Module):

def

def

cls_tokens = self.cls_token.expand(#mg.shape[0], -1, -1)

__init__ (self, dim, depth, heads, mlp_dim):

super().__init_ ()
self.layers = nn.ModuleList([])
for _ in range(depth):
self.layers.appen®N nn.ModuleList ([
Residual(PreNorm¥&Jim, Attention(dim, heads = heads))),
Residual(PreNorm(di
1))

forward(self, x, mask = None):

FeedForward(dim, mlp_dim)))

for attn, ff in self.layers: Transformer Encoder

x = attn(x, mask = mask)
X = FFE(x)
return x

) {(pLp2 ¢c)';, pl =p;, p2 = p)

Multi-Head |
Attention

\ J
s \

Norm

o ——

-

Embedded

https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py Patches




Implementation

z € RN*P  input sequence

Dx3D
Ijqu eR ,

[q) k7 V] = ZU kv

class Attention(nn.Module): A = softmax (qkT/\/Dh) 7 RN
i s e SA(z) = Av.  “Attention weight A; : similarity btw g’, k/
super().__init__()
sel.neads = hads MSA(2) = [SA1(2) SAo(2)s- - 1SAK(D] Upnsa Uy € REPXP

self.scale = dim *x -0.5

self.to_gkv = nn.Linear(dim, dim *x 3, bias = False)
self.to_out = nn.Linear(dim, dim)
def forward(self, x, mask = None):
b, n, _, h = xx.shape, self.heads
gkv = self.to_gkv(x)
q, k, v = rearrange(gkv, 'b n (gkv h d) = gkv b h n d', gkv = 3, h = h)

dots = torch.einsum('bhid,bhjd->bhij"', q, k) * self.scale

if mask is not None:
mask = F.pad(mask.flatten(1), (1, @), value = True)
assert mask.shape[-1] == dots.shape[-1], 'mask has incorrect dimensions'
mask = mask[:, None, :] * mask[:, :, None]
dots.masked_fill_(~mask, float('-inf'))
del mask

attn = dots.softmax(dim=-1)

out

torch.einsum('bhij,bhjd->bhid', attn, v)
rearrange(out, 'b hnd = bn (hd)")

out
out = self.to_out(out)
return out https://github.com/lucidrains/vit-pytorch/blob/main/vit_pytorch/vit_pytorch.py




Experiments

Ours Ours BiT-L Noisy Student
(ViT-H/14) (ViT-L/16) (ResNet152x4) (EfficientNet-L2)
ImageNet 88.36 87.61 = 0.03 87.54 + 0.02 88.4/88.5"
ImageNet Real 90.77 90.24 £+ 0.03 90.54 90.55
CIFAR-10 99.50 = 0.06 99.42 £+ 0.03 99.37 £ 0.06 —
CIFAR-100 94.55+0.04 93.90 +=0.05 93.51 +0.08 —
Oxford-IIIT Pets 97.56 £0.03 97.32+0.11 96.62 £+ 0.23 —
Oxford Flowers-102  99.68 & 0.02 99.74 + 0.00 99.63 4 0.03 —
VTAB (19 tasks) 77.16 £0.29 75.91 £0.18 76.29 +1.70 —
TPUv3-days 2.5k 0.68k 9.9k 12.3k
80 EEm ViT-H/14  mem BiT-L (R152x4) M VIVI(R50x3) W S4L (R50x1)
S 88
=175
§ II 80 II : II 60 III
5 70
) 82
< HEN I
- 70 - 50 |

VTAB (19 tasks)

Natural (7 tasks)

Specialized (4 tasks)

Structured (8 tasks)

Figure 2: Breakdown of VTAB performance in Natural, Specialized, and Structured task groups.



Experiments
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Figure 3: Transfer to ImageNet. @ While

large ViT models perform worse than BiT
ResNets (shaded area) when pre-trained on
small datasets, they shine when pre-trained on
larger datasets. Similarly, larger ViT variants
overtake smaller ones as the dataset grows.
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5 ViT-L/16 - ViT-B/32 ResNet50x1 (BiT)
2 *-ViT-L/32 ViT-b/32 -#®ResNetl152x2 (BiT)
5 B0

10 M 30 M 100 M 300
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Figure 4: Linear few-shot evaluation on Ima-
geNet versus pre-training size. ResNets per-
form better with smaller pre-training datasets
but plateau sooner than ViT which performs
better with larger pre-training. ViT-b is ViT-
B with all hidden dimensions halved.



Experiments

Average-5 S ImageNet
®
—_ ®
= g " €
= 951 @ -
§ ®e . Q¢
=
Q
& &
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Z 80 -
E ®  Transformer (ViT) 1 ® Transformer (ViT)
A ResNet (BiT) | ResNet (BiT)
Hybrid _ Hybrid
102 10° 10* 10° 103 10*

Total pre-training compute [exaFLOPs]

Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids.
Vision Transformers generally outperform ResNets with the same computational budget. Hybrids
improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.



DelT: Data-efficient Image Transformers

* The first competitive convolution-free transformer
by training on Imagenet only

* Trained using a teacher-student strategy specific to
transformers

* |t relies on a distillation token ensuring that the
student learns from the teacher through
attention.

 When using CNN as teacher, the distilled model
outperforms its teacher in terms of the trade-off
between accuracy and throughput

LCE Eteacher
{ {
leOOoODOooOoOoOe )}

i

FEN

self-attention

i)
(Clnnnnninjn=ic)
L N Y N A M A |

class patch distillation
token tokens token



CvT: Convolutions into Vision Transformers

[:] MLP
Head
% D cls token
B - = o [
o : - (=} =l o =l
=] . m ~] . o —I ]
ms 8 e 0 RS me|[] 58
— 3 = “ 3 — =
3 c o < 3 e o = 3 c R o=
T g S 0 g3 [:‘ S c o o
® 9 [:]*3: — 29 >3 = —> ® 3 + 3z
23 R 2 =8| [] B8 sa([ |88
23 [] |28 Rg — =23 el
& : B e & - B
o = e [:, I oken map x; o I:] =
[:] Token map x,; D
Input image x; [:]
[:] Stage 2 Stage 3
Stage 1 (a)

* Each stage starts with a convolutional token embedding that performs an
overlapping convolution operation on a 2D-reshaped token map

* The linear projection prior to every self-attention block is replaced with a
depth-wise separable convolution as the projection



Swin Transformer (ICCV’21 best paper)

segmentation

class1ﬂcat10n detect1on cla351ﬁcat10n
/ / = //// Z/ .
etz

y e ~
e

(a) Swin Transformer (ours) (b) ViT

e Swin: hierarchical feature maps by merging image patches

* linear computation complexity to input image size due to computation of self-
attention only within each local window (using Shifted windows)



Swin Transformer: Pipeline Overview
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(a) Architecture

(b) Two Successive Swin Transformer Blocks

Figure 3. (a) The architecture of a Swin Transformer (Swin-T); (b) two successive Swin Transformer Blocks (notation presented with
Eq. (3)). W-MSA and SW-MSA are multi-head self attention modules with regular and shifted windowing configurations, respectively.



Swin Transformer: Shifted Window

Layer | Layer I+1
A local window to
perform self-attention
>
A patch
. r _ [masked] - A C
E MSA ||
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masked| | ,

window partition Cl A -~
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TimeSformer: ViT for Video

Time Att.

20
’ Joint Space-Time Divided Space-Time Sparse Local Global Axial Attention
Space Aiention (3) Attention (ST) Attention (T+S) Attention (L+G) (T+W+H)

Figure 1. The video self-attention blocks that we investigate in this work. Each attention layer implements self-attention (Vaswani et al.,
2017b) on a specified spatiotemporal neighborhood of frame-level patches (see Figure 2 for a visualization of the neighborhoods). We use
residual connections to aggregate information from different attention layers within each block. A 1-hidden-layer MLP is applied at the
end of each block. The final model is constructed by repeatedly stacking these blocks on top of each other.



TimeSformer: ViT for Video
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Space Attention (S)

Figure 2. Visualization of the five space-time self-attention schemes studied in this work. Each video clip is viewed as a sequence of
frame-level patches with a size of 16 x 16 pixels. For illustration, we denote in blue the query patch and show in non-blue colors its
self-attention space-time neighborhood under each scheme. Patches without color are not used for the self-attention computation of the
blue patch. Multiple colors within a scheme denote attentions separately applied along different dimensions (e.g., space and time for
(T+S)) or over different neighborhoods (e.g., for (L+G)). Note that self-attention is computed for every single patch in the video clip, i.e.,
every patch serves as a query. We also note that although the attention pattern is shown for only two adjacent frames, it extends in the
same fashion to all frames of the clip.



TimeSformer: ViT for Video

Table 2. Comparing TimeSformer to SlowFast and I3D. We ob-
serve that TimeSformer has lower inference cost despite having
a larger number of parameters. Furthermore, the cost of training
TimeSformer on video data is much lower compared to SlowFast
and I3D, even when all models are pretrained on ImageNet-1K.

Attention Params K400  SSv2
Space 859M 769 366 Method Top-1 Top-5 TFLOPs
Joint Space-Time 85.9M 774 58.5 R(2+1)D (Tran et al. 2018) 72.0 90.0 17.5
ivided Space-Ti 121.4 780  59.5 2 : ' .
Seeemiateien DugE 7500 58 bLVNet (Fan et al., 2019) 735 912  0.84
Axial 156.8M 735  56.2 TSM (Lin et al., 2019) 747 N/A N/A
. . . . S3D-G (Xie et al., 2018) 7477 934 N/A
Table 1. Video-level accuracy for different space-time attention Oct-I3D+NL (Chen et al., 2019) 757  N/A 0.84
schemes in TimeSformer. We evaluate the models on the valida- D3D (Stroud et al 2620) 75'9 N/A N A
tion sets of Kinetics-400 (K400), and Something-Something-V2 I3D+NL (Wang et al 2018b) 777 93.3 10.8
(SSv2). We observe that divided space-time attention achieves the ip-CSN-152 (Tran et al., 2019) 778 928 39
best results on both datasets. CorrNet (Wang et al., 2020a) 792 NA 67
_ _ LGD-3D-101 (Qiu et al., 2019) 794 944 N/A
Mogol Pretrain - K400 Training K400 Inference  Params gt (Feichtenhofer et al., 2019b) 79.8 939 7.0
Time (hours) Acc. TFLOPs
13D 8x8 R50 ImageNet-1K 444 710 111 28.0M X3D-XXL (Feichtenhofer, 2020) 804 94.6 5.8
I3D 8x8 R50  ImageNet-1K 1440 734 111  28.0M :

SlowFast R50 ImaieNet-lK 448 70.0 1.97 34.6M TimeSformer 78.0  93.7 0.59
SlowFast RS0 ImageNet-1K 3840 756 197  34.6M TimeSformer-HR 797 944 5.11
SlowFast R50 N/A 6336 764 197  34.6M TimeSformer-L 80.7 94.7 7.14

TimeSformer ImageNet-1K 416 75.8 0.59 121.4M

TimeSformer ImageNet-21K 416 78.0 0.59 121.4M

Table 5. Video-level accuracy on Kinetics-400.



DINO: Selt-Supervised Learning with ViTs

Source: https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training/



https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training/

DINO: Selt-Supervised Learning with ViTs




DINO: Self-Supervised Learning with ViTs

Supervised




Multi-Modality: Video-Audio-Text Transformer (VATT)

V ATT . . Transformer Encoder Multimodal
Multimodal Projection Head i Projection Head
(L x @< video audio
feature feature
Transformer Encoder MLP LLITLT] LD
Modality-Specific OR Modality-Agnostic 4
Norm T‘CE
0ss

oo MOOOO0O O

s \
Modality-Specific Patch + Position Embedding ] I\?o':lt':tei-r;'ig?\d | U
[ Linear Projection ] [ Linear Projection ] [ Linear Projection ] *_f_’ EDZE}MEEED
(3D RGB voxels) (1D waveform) | (1-hot word vectors) [ Norm s D
: :' S8 - .4 .'-2. " e WMM “Sled dogs running on the (TITTT]
A . \ .‘.mm snow pulling the sled.” [ Embedding \ =
Input Video Input Audio Waveform Input Text ’ feature

Figure 1: Overview of the VATT architecture and the self-supervised, multimodal learning
strategy. VATT linearly projects each modality into a feature vector and feeds it into a Transformer
encoder. We define a semantically hierarchical common space to account for the granularity of
different modalities and employ the Noise Contrastive Estimation (NCE) to train the model.



Ongoing Debate: ViTs Should Go More Complicated or Less?

e Adding “convolution-like” inductive
bias and structures

* Injecting convolution layers, pyramid
structure, dense connections, sliding
windows, multi-sized views or attention
windows ...

e ... Orjust, keep it simple and
“universal”?

 Example: W. Chen et. al., “A Simple Single-
Scale Vision Transformer for Object Detection
and Instance Segmentation”, ECCV 2022

* Someone goes even further: MLP-Mixer,
Conv-Mixer, Perceiver-I0...




Look Back: ConvNets

Inductive biases
Translation equivariance
Shared computations

Hierarchical feature maps

Typical build: "going deeper with small convolutions”

Pros versus Cons?



Look Back: Vision Transformers

* Plain transformers outperform ResNets by a significant margin
« mostly on image classification, only recently on detection/segmentation

* No hierarchical feature maps

* Quadratic complexity with respect to the input size



ConvNet
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ConvNeXt — 7x7 (Liu et al. 2022)
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ConvNeXt — 7x7

 ConvNeXts compete favourably with Transformers on image
classification.

* ConvNeXts outperforms Swin Transformer on general
computer vision tasks such as object detection and semantic
segmentation.



RepLKNet - 31x31

RepLKNet
» Large Kernels + Structural Re- Input
npu

parameterization |

v v
«— = | 31X31 5%5

* Achieving comparable or superior
results than Swin on ImageNet + a +
few downstream tasks.

) input input input
v
fuse BN ! re-parameterize
TxT7 3x3
. [ [ { [ > 7x7 3x3 [ > Y )
[ BN |[[ BN |
+ +
J “ < N
kernel parameters v v v re-parameterized kernel



Sparse Large Kernel Network (SLaK)

Starting from ConvNeXt ...
* Increase the kernel size of stages to [51, 49, 47, 13]
« Construct sparse decomposed kernels (sparsity=0.4, N=5 )

« Use sparse groups, expand model width to 1.3x

ConvNexXt[7,7,7,7] ConvNeXt (RepLKNet) [31, 29, 27, 13] SLaK [51, 49, 47, 13]
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